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Abstract

We present a methodology for the large-eddy simulation of compressible flows with a low-numerical dissipation scheme
and structured adaptive mesh refinement (SAMR). A description of a conservative, flux-based hybrid numerical method
that uses both centered finite-difference and a weighted essentially non-oscillatory (WENO) scheme is given, encompassing
the cases of scheme alternation and internal mesh interfaces resulting from SAMR. In this method, the centered scheme is
used in turbulent flow regions while WENO is employed to capture shocks. One-, two- and three-dimensional numerical
experiments and example simulations are presented including homogeneous shock-free turbulence, a turbulent jet and the
strongly shock-driven mixing of a Richtmyer–Meshkov instability.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Compressible flows of practical interest generally involve a number of physically different key features. In
some regions, the level of compressibility may be sufficiently high to form shock waves. In other locations, the
flow may be turbulent, and yet in other regions both shocks and turbulence may coexist. Practical numerical
simulation of these flows often necessitates a certain degree of dynamic resolution adaptation. For the Euler
equations, structured adaptive mesh refinement (SAMR) [1,2] is particularly efficient as it effectively allows for
both temporal and spatial mesh adaptation. Additionally, the adequate numerical treatment of inherently dif-
ferent flow features is often best accomplished by using different numerical methods based on local criteria, for
example, switched or hybrid methods that change the numerical stencil around shocks and revert to centered
stencils in smooth regions [3–7]. Centered finite-difference methods have been used with explicit artificial
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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Fig. 1. Comparison of decay of turbulence kinetic energy in a homogeneous decaying compressible LES computed on a grid of 323 points
using WENO vs. centered scheme. DNS computed with a 2563 grid and a padé method.
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viscosity to regularize shocks in non-conservative form [8], and as a penalty based finite-difference method [9]
for shockless flows. Other hybrid methods include [10], where transport property models change depending on
local flow conditions. In general, scheme alternation has often been found to be appropriate when high fidelity
solutions are to be obtained at minimal computational expense.

As front tracking is extremely difficult in three-dimensional flows and shock waves cannot be fully resolved
(the shock thickness is of the order of the mean free path), numerical methods for compressible flows usually
try to capture shock waves and their interactions on an under-resolved mesh. According to the Lax–Wendroff
theorem [11], the convergence of shock-capturing methods toward a weak solution of the Euler equations
requires the discrete conservation of mass, momentum and energy. In SAMR methods, this property is
typically accomplished by using flux-based finite volume discretizations (see for instance [12] for a general
introduction), although non-flux-based formulations are also possible [13]. Flux-based extensions of the Ber-
ger–Colella SAMR method, originally developed for time-explicit finite volume schemes, to time-implicit
problems which include combustion [14] and radiation [15,16], are also available.

Apart from conservation, differing flow features may demand different numerical approaches. For example,
shocks and contact discontinuities are typically smoothed over the available grid points by performing some
form of controlled upwind-biased differentiation of the fluxes (that we will refer to as upwinding from this
point), but flows involving turbulence require a different strategy since the complicated flow structure demands
a more accurate spectral representation. For turbulence in the high Reynolds number regime, large-eddy sim-
ulation (LES) is a practical approach in which only the large scales of the flow are simulated directly and the
small scales are modeled. Turbulent flows are usually of a wavy nature, and upwinding techniques introduce
substantial numerical dissipation that tends to artificially remove energy from the highest resolved wavenum-
bers. In order to avoid interference with the flow physics, transport schemes suitable for LES therefore have to
represent the energy transfer between wavelengths as accurately as possible [17]. Experience in LES with
explicitly modeled subgrid terms has shown that it is best to use numerical methods with minimal numerical
dissipation for the resolved-scale flow. Such schemes can be constructed by the use of centered numerical sten-
cils but care must be taken to avoid non-linear instabilities as there is no intrinsic numerical stabilization. This
can be achieved to some extent by using kinetic energy conserving (skew-symmetric) formulations [18–21].
Fig. 1 demonstrates the efficacy of LES when using an appropriate numerical method. It compares the decay
of turbulence kinetic energy between a direct numerical simulation (DNS) [22]1 and LES with either the
5-point centered-difference scheme outlined in this paper or the standard shock-capturing scheme WENO-
5. Although the WENO scheme has the same stencil width as the centered method, the inherit numerical dis-
1 Case D9 with microscale Reynolds number of 175 and turbulent Mach number of 0.488 at 2563 resolution.
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sipation of a shock-capturing scheme produces an unsuitable result for this canonical turbulent flow of homo-
geneous decaying compressible turbulence.

Just as LES can make the simulation of certain turbulent flows numerically tractable by focusing on the
scales of interest, SAMR can provide large computational savings when important localized flow features have
higher resolution requirements then the majority of the flow. In traditional applications, such features include
shocks, contacts, and other regions such as induction zones in detonations. The importance of resolution
adaptation for LES has recently been highlighted [23]. In our treatment of LES with SAMR, we recognize
that, in addition to the previously mentioned features, turbulent regions in a flow also have their own resolu-
tion requirements. For example, large computational savings can be achieved when the turbulent regions of
the flow do not fill the entire flow domain as will be seen in the simulations presented in Section 6.

In this paper, we present a dynamically-adaptive, three-dimensional hybrid finite-difference method that is
conservative and has low numerical dissipation. To obtain the computational efficiency of SAMR, we extend
the Berger and Colella [2] algorithm to accommodate the requirements of hybrid shock dynamics/large-eddy
simulations with such a numerical method. In general, many of the difficulties that are encountered in low dis-
sipation methods with SAMR are related to stability issues that arise at interfaces between meshes of different
spacing [24]. A successful approach to stabilize the simulations is to filter the fluid mechanical fields with low-
pass filters tuned to minimize their effect on the large flow scales [25]. In practice this is just a more sophisti-
cated form of global numerical dissipation that we wish to avoid. In our approach any such dissipation is
physically isolated to the coarse-fine boundaries and is best described within the numerical scheme. Our hybrid
numerical method has two components: a finite-difference WENO scheme [26,4] to be used around disconti-
nuities (both physical and due to mesh resolution changes) and a conservative, tuned centered-difference
(TCD) scheme (but in skew-symmetric form) in the smooth or turbulent regions of the flow. The WENO
and centered-difference methods are specially tuned to minimize dispersive errors at those locations where
scheme switching takes place. The present work is the evolution of [7] to SAMR meshes. The principal advan-
tage of finite-difference formulations of the WENO method, as opposed to finite volume, is largely related to
efficiency (especially in three-dimensions); the multi-dimensional reconstruction step of the finite volume ver-
sion can be avoided completely and no multi-point quadrature rule has to be used in the numerical flux
approximation.

The outline of the paper follows a prescription from the general to the specific, from framework of the
SAMR for hyperbolic systems, through the equations of motion and the numerical method to simulations.
Section 2 describes the SAMR formulation with particular attention paid to the complications owing to
the requirements of LES. The following sections describe the LES equations of motion (Section 3) and their
implementation in this framework by means of the flux-based low dissipation numerical method (Section 4).
Section 5 investigates convergence and numerical dissipation. Finally, Section 6 presents three-dimensional
examples of LES simulations and comparisons with experiments. Appendix A discusses the choice of bound-
ary stencils and boundary conditions and Appendix B discusses the subgrid closure.
2. Structured adaptive mesh refinement

The SAMR method after Berger and Colella [2] is a dynamic mesh adaptation technique for hyperbolic
systems tailored for time-explicit finite volume schemes on block-structured Cartesian meshes. Such schemes
are typically derived from a conservation law
oq

ot
þ o

oxk
f kðqÞ ¼ 0; ð1Þ
where q is the vector of state and f k denotes the flux vector, utilizing a cell-wise update formula of the general
form
Qnþ1 ¼ Qn � Dt
Dxk

DFkðQnÞ: ð2Þ



Fig. 2. Location of numerical fluxes required for flux correction. Cells to correct are shaded.
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Herein, DFk(Qn)/Dxk denotes the difference quotient of the numerical flux function in the kth spatial direction
that locally approximates the derivative of the flux vector fk. The discrete analogue of the conservative variable
vector q at time t = nDt is denoted by Qn, where, for simplicity, we have omitted all spatial indices.2

Characteristic for the idea of structured mesh adaptivity is that Eq. (2) is technically not implemented in a
cell-based fashion but rather in a routine which operates on equidistant subgrids which become computation-
ally decoupled during one update through the use of ghost or halo cells. This enables an increased computa-
tional performance, but requires a subsequent correction operation at coarse-fine boundaries to construct a
combined numerical solution on the non-uniform mesh.

2.1. SAMR integration cycle

SAMR uses a hierarchy of successively embedded level domains that are recursively constructed by group-
ing cells tagged for refinement into non-overlapping rectangular grids. All spatial All spatial mesh widths Dxk

and the temporal resolution Dt are set to be rl-times finer on level l than on level l � 1, i.e., Dtl :¼ Dtl�1/rl and
Dxk,l :¼ Dxk,l�1/rl with rl 2 N; rl P 2 for 0 < l 6 lmax and r0 = 1, and time-explicit schemes of the form (2) in
principle remain stable on all levels of the hierarchy.

Different levels are integrated recursively in time allowing the derivation of interpolated boundary condi-
tions of Dirichlet-type from the coarser level at coarse-fine interfaces. In this paper, we utilize a linear inter-
polation in time, cf. [2], and a locally conservative linear interpolation operation in space that is detailed in
Section 2.2. When a fine level l + 1 reaches the same discrete time as the next coarser level l, values of cells
covered by finer subgrids are overwritten by averaged fine grid values. This averaging or restriction operation
enhances the approximation on the coarser grid and synchronizes both levels. The restriction leads to a vio-
lation of the discrete conservation property on the coarse level as it neglects numerical fluxes between the fine
and the coarse-level domains. In order to ensure a conservative coarse-fine boundary matching, the coarse-flux
approximation adjacent to modified coarse-level cells is replaced with the sum of all overlying fine level fluxes,
cf. [2]. For simplicity, but also for accuracy of the approximation, we require that the hierarchy is properly

nested, which means that only cells of level l need to be corrected with accumulated level l + 1 fluxes. As
an example, we sketch this operation in two space dimensions for cell (i, j) in Fig. 2. After the update on level
l the correction term dF1;lþ1

i�1
2;j

is initialized by dF1;lþ1

i�1
2;j

:¼ �F1;l
i�1

2;j
. During the rl+1 update steps of level l + 1 all

necessary fine level fluxes are accumulated, i.e.
2 Note that throughout the text we use bold notation to denote vector quantities and employ the convention that repeated indices imply
summation unless stated otherwise.
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dF1;lþ1

i�1
2;j

:¼ dF1;lþ1

i�1
2;j
þ 1

r2
lþ1

Xrlþ1�1

m¼0

F1;lþ1

vþ1
2;wþm
ðt þ jDtlþ1Þ: ð3Þ
When the integration of the fine level is complete, the correction is applied by calculating Qnþ1
ij :¼ Qnþ1

ij þ
Dtl

Dx1;l
dF1;lþ1

i�1
2;j

.

2.2. SAMR prolongation operator

A crucial operation in SAMR is the interpolation or prolongation operator that is necessary to transfer data
from coarser meshes into refined meshes. The original sources on SAMR [1,2] suggest the use of a bi-linear spa-
tial interpolation operation that preserves the monotonicity of the solution, but satisfies only a discrete conser-
vation property in the global sense. While this choice is unproblematic for typical shock wave problems, it is
inappropriate for large-eddy simulations given the little amount of numerical stabilization that a centered dif-
ferencing provides throughout the entire SAMR hierarchy (see also Section 4.1). All simulations throughout
this paper were therefore done with locally conservative linear operations. For the exemplary fine cell
(v + 1,w) in Fig. 2 the prolongation operator employed reads
Ql
vþ1;w :¼ Ql�1

ij þ m1ðQl�1
iþ1;j �Ql�1

i�1;jÞ þ m2ðQl�1
i;jþ1 �Ql�1

i;j�1Þ ð4Þ
with factors m1 = m2 = �1/8. As we use a refinement strategy carefully tailored for our problem class, cf. Sec-
tion 5, the lack of monotonicity preservation of Eq. (4) does not cause any problems in our simulations.

2.3. Runge–Kutta scheme for SAMR

Our use of a centered (non-dissipative) scheme imposes additional restrictions on the time integration
method. We are interested here in explicit multi-stage schemes for ease of implementation within SAMR.
Owing to the stability properties of these explicit integration schemes, the preferred practical self-starting meth-
ods with the ability of inexpensive time adaptation in SAMR are Runge–Kutta-type methods of third or higher
order. Lower-order Runge–Kutta methods are not stable for purely convective problems, the dominant char-
acter of the LES equations at high Reynolds numbers. Moreover, the use of upwinding in WENO imposes addi-
tional temporal stability restrictions at discontinuities. These stability restrictions are associated with the
WENO operator and lead to undesired oscillations at shocks if the coefficients of the Runge–Kutta method
are not all positive (substages of the scheme can be unstable). For these reasons, we use the optimal third-order
strong stability preserving (SSP) Runge–Kutta scheme of [29] that posses the total variation diminishing (TVD)
property provided the single-step operator of Eq. (2) is TVD. Time advancement is accomplished following
~Qt ¼ atQ
n þ bt

~Qt�1 þ ct

Dt
Dxk

DFkð~Qt�1Þ; ð5Þ
successively for t = 1, . . .,!. The coefficients at, bt and ct are given in [29] and take the values shown in Table
1. The iteration is started with ~Q0 :¼ Qn and a1 = 1, b1 = 0. After the final stage ! the next time step is given
by Qnþ1 :¼ ~Q!. The entire iteration can be implemented storage-efficiently by updating only Qn+1. Applying
Eq. (5) successively yields the expression
Qnþ1 ¼ Qn �
X!

t¼1

ut

Dt
Dxk

DFkð~Qt�1Þ with ut ¼ ct

Y!
m¼tþ1

bm ð6Þ
1
ients of the optimal 3rd order SSP Runge–Kutta scheme of [29] and the flux-correction coefficient ut

at bt ct ut
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as conservative update formula for a multi-stage method instead of Eq. (2). The effective flux pre-factors ut are
essential to implement the SAMR flux correction. The computation of the previous correction term in Eq. (3)
is then realized as
dF1;lþ1

i�1
2;j

:¼ �u1F1;l
i�1

2;j
ð~Q0Þ; dF1;lþ1

i�1
2;j

:¼ dF1;lþ1

i�1
2;j
�
X!

t¼2

utF
1;l
i�1

2;j
ð~Qt�1Þ; ð7Þ
on level l and
dF1;lþ1

i�1
2;j

:¼ dF1;lþ1

i�1
2;j
þ 1

r2
lþ1

Xrlþ1�1

m¼0

X!

t¼1

utF
1;lþ1

vþ1
2;wþm
ð~Qt�1ðt þ jDtlþ1ÞÞ; ð8Þ
on level l + 1. For all simulations throughout this paper we have employed this algorithm together with the
optimal third-order SSP Runge–Kutta scheme of [29], but we note that it is equally applicable to other explicit
Runge–Kutta schemes. For instance, the coefficients a1,. . .,3 = 1, b1,. . .,3 = 0, c1 ¼ 1

3
, c2 ¼ 1

2
, c3 = 1 correspond to

a standard three-stage scheme.

3. Governing equations

The governing equations of LES of compressible flows are formulated using Favre-filtered variables,
defined for an arbitrary function of Cartesian space, x and time, t and denoted by /(x, t) as
~/ ¼ q/
�q
; ð9Þ
where q is the density and the overbar denotes the ‘‘conceptual’’ filter operator, defined by
�/ðx; t; DcÞ ¼
Z

Gðx� x0; DcÞ/ðx0; tÞdx0; ð10Þ
with G(x � x 0;Dc) representing the filter kernel with compact support and Dc the subgrid cutoff length scale.
The idea behind LES is that one computes the temporal evolution of �/ðx; t; DcÞ or ~/ðx; t; DcÞ while all scales
below Dc are not resolved but modeled by a subgrid closure. We remark that this filtering operation is never
explicitly performed in an actual LES calculation. We, therefore, view this primary filtering as a conceptual
device that connects the Navier–Stokes equations to the LES model equations. It is introduced here for com-
pleteness. In what follows, for clarity, we will drop the explicit dependence on Dc.

Conservation of mass, momentum, energy and M species mass fractions are expressed by the corresponding
filtered transport equations. Presented in the form of Eq. (1) the conservative vector of state becomes
q ¼ ð�q; �q~u1; �q~u1; �q~u3;E; �qeY 1; . . . ; �qeY MÞT; ð11Þ

while the total directional flux vectors are decomposed for clarity,
f kðqÞ ¼ f k
invðqÞ þ f k

visðqÞ þ f k
sgsðqÞ; ð12Þ
into the inviscid fluxes, the resolved-scale viscous fluxes and the subgrid scale terms which represent unresolved
stresses and other transfers between the resolved scales and the subgrid. Mathematically these are given by
f k
invðqÞ ¼

�q~uk

�q~u1~uk þ d1k�p

�q~u2~uk þ d2k�p

�q~u3~uk þ d3k�p

ðE þ �pÞ~uk

�qeY 1~uk

..

.

�qeY M ~uk

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
; f k

visðqÞ ¼

0

�~r1k

�~r2k

�~r3k

~qk � ~rkj~uj

~J 1
k

..

.

~J M
k

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
; f k

sgsðqÞ ¼

0

s1k

s2k

s3k

re
k

r1
k

..

.

rM
k

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
: ð13Þ
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The resolved fields are denoted by �q for density, ~uk for the velocity components, �p for pressure, E for total
energy and eT for temperature. The resolved deviatoric Newtonian viscous stress tensor is defined as
~rik ¼ ~l
o~uk

oxi
þ o~ui

oxk

� �
� 2

3
~l

o~uj

oxj
dik; ð14Þ
and the resolved heat conduction and species diffusion terms are given by
~qk ¼ �~k
oeT
oxk

and ~J m
k ¼ ��q~Dm

oeY m

oxk
; ð15Þ
respectively, with no sum on the species index m. The resolved shear viscosity, ~l, thermal conductivity, ~k and
species diffusivity, ~Dm, are typically functions of eT and composition. In Eq. (15), heat flux contributions from
enthalpy diffusion and radiation effects are neglected.

The state relationship for the total energy E includes contributions from the subgrid kinetic energy �qksgs and
subgrid enthalpy �qhsgs in the form
E ¼ �qhi
eY i � �p þ 1

2
�q~uk~uk þ �qðksgs þ hsgsÞ; ð16Þ
where hi, assumed to be a function of eT , is the enthalpy of the ith component of the gas mixture. The system of
equations is closed thermodynamically by the equation of state
�p ¼ �qRoeT ðeY i=W iÞ; ð17Þ

where Ro is the universal gas constant and Wi is the molecular weight of ith species; the subgrid contribution
to the mean molecular weight due to the correlation of the mixture composition and temperature are ne-
glected. In the numerical simulations presented in this paper, the individual enthalpies are modeled as linear
functions of temperature.

The subgrid flux terms, f k
sgsðqÞ, for momentum sik, energy re

k and species rm
k must be provided for full LES

closure in addition to related models for the subgrid kinetic energy ksgs and enthalpy hsgs. In our use of LES,
we also assume that the model dependence on Dc is only parametric and that Dc is at most a slowly varying
function of spatial coordinates so any subgrid contribution from this variation is negligible. The calculation of
the modeling terms from the resolved-scale quantities for our simulations was based on the stretched-vortex
model [30–32] and is summarized in Appendix B.

4. Numerical method

In this section, we focus on the discrete spacial representation of our system. Standard SAMR methodology
requires a flux-based numerical scheme formulated on a Cartesian uniform grid. This method is then applied
to each grid (patch) of the mesh hierarchy. The derivatives of inviscid fluxes f k

inv are presently computed using
a hybrid finite-difference method with a 5-point tuned centered-difference (TCD) scheme in smooth or turbu-
lent regions of the flow and a 5-point WENO upwinded scheme [33] at discontinuities. The WENO stencil
coefficients have been adjusted such that the optimal stencil matches the TCD stencil (cf. Eq. (18) below). This
modification largely eliminates any dispersion errors that result when transitioning between schemes. If this is
not done, a mismatch of modified wavenumber behavior results, leading to undesirable dispersion errors that
are very similar in nature to those that arise in discretizations with variable spacing between co-located points
described by [34]. The main difference between the formulation presented here and [7] is the reformulation in
terms of the discretely more stable skew-symmetric form, which we now discuss.

4.1. Stable TCD formulation

Consider a one-dimensional uniform discretization of the independent coordinate x with grid spacing Dx.
The derivative of a function f(x) evaluated at the point x = jDx can be approximated by the 5-point centered-
difference operator D,
Df jj �
1

Dx
ðaðfjþ2 � fj�2Þ þ bðfjþ1 � fj�1ÞÞ �

of
ox

����
j

; ð18Þ
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where fj = f(jDx) and b = 1/2 � 2a is required for second-order accuracy. The choice a = 0 leads to the stan-
dard 2nd-order explicit stencil and the choice �1/12 leads to the standard 4th-order explicit stencil. In three-
dimensional LES, it may be advantageous to optimize the stencil according to other criteria (not necessarily
order of accuracy). This was done by [7], where the stencil was optimized to minimize truncation errors in LES
[35] while maintaining 2nd-order accuracy. With this method, the parameter a takes the value �0.197 and the
resulting stencil is referred to as the tuned center difference (TCD). The spectral transfer properties of the dis-
cretization are discussed in [7]. In the following exposition, we use the general formulation without specifying
a to insure that the results are equally valid for the entire family of 5-point centered stencils.

The discrete numerical stability of the inviscid terms f k
inv is a desirable property of centered discretizations

for LES at high Reynolds number, since, in some flow regions, the viscous terms, and sometimes even the SGS
terms, may provide only negligible stabilization. It is known that asymptotic stability can be achieved for
incompressible flows by using kinetic energy preserving discretizations, also known as skew-symmetric [19].
A slightly adapted form of kinetic energy conservation is also required for compressible flows [20] away from
shocks. Moreover, because we use centered stencils in the SAMR framework, the numerical method must be
strictly stable at all mesh levels (even at the coarse under-resolved ones). This has no consequence on the final
numerical solution because the under-resolved, coarse fields are ultimately discarded when applying the
restriction operator, but it allows the use of a uniform algorithm throughout the entire hierarchy. Therefore,
the momentum and species convective terms are computed numerically as
oð�q~ui~ukÞ
oxk

! 1

2

oð�q~ui~ukÞ
oxk

þ 1

2
�q~uk

o~ui

oxk
þ 1

2
~ui

oð�q~ukÞ
oxk

; ð19Þ

oð�qeY i~ukÞ
oxk

! 1

2

oð�qeY i~ukÞ
oxk

þ 1

2
�q~uk

oeY i

oxk
þ 1

2
eY i

oð�q~ukÞ
oxk

: ð20Þ
This numerical representation of the convective terms alone is not sufficient to improve stability of compress-
ible flows owing to the exchanges between internal and kinetic energy that are not accounted in Eqs. (19) and
(20), and result in the divergence of the thermodynamic fields including pressure and density by accumulation
of aliasing errors. To improve robustness, we need to consider the convective term of the energy equation. Our
constraint of enforcing discrete conservation of energy in the finite difference type discretization of SAMR re-
stricts the formulations to those that can be written in flux form. Of these, the most stable is the skew-sym-
metric formulation that conserves internal energy variance given by Eq. (22) in [21], that reads
oððE þ �pÞ~ukÞ
oxk

! 1

2

oð�q~e~ukÞ
oxk

þ 1

2
�q~uk

o~e
oxk
þ 1

2
~e
oð�q~ukÞ

oxk
þ 1

2
~ui

o�q~ui~uk

oxk
þ 1

2
�q~ui~uk

o~ui

oxk
þ �p

o~uk

oxk
þ ~uk

o�p
oxk

; ð21Þ
where ~e ¼ E=�q� 1
2
~u2

k is the total internal energy.

4.2. Flux-based formulation

In the present implementation, the SAMR approach is tailored specifically for flux-based discretizations
[27,28]. For example, numerical approximations, F k, to the fluxes f k formed at the cell faces are used to
enforce conservation during timestep refinement; see Eq. (3). Additionally, only by use of a flux-based form
can the scheme switching of our numerical method between WENO and TCD be achieved without loss of con-
servation. WENO schemes themselves are naturally flux-based formulations, but a flux-based formulation of
the skew-symmetric center difference method is required. We briefly present the necessary ingredients.

We construct fluxes consistent with the general center-difference operator Eq. (18). The divergence-like flux
F div

jþ1=2 satisfies
Df jj ¼
F div

jþ1=2 � F div
j�1=2

Dx
; ð22Þ
and F div
jþ1=2 may be interpreted as the approximate value of f(x) at the cell face x = (j + 1/2)Dx. This can be

obtained readily and reads
F div
jþ1=2 ¼ aðfjþ2 þ fj�1Þ þ ðaþ bÞðfj þ fjþ1Þ: ð23Þ
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The consistent flux-based discretization of Eqs. (19)–(21) requires a representation of the product rule deriv-
ative for f(x) = a(x)b(x). We denote the sought term by F prod

jþ1=2 and require that
aDbjj þ bDajj ¼
F prod

jþ1=2 � F prod
j�1=2

Dx
; ð24Þ
be satisfied. The corresponding formula
F prod
jþ1=2 ¼ aðajþ2bj þ aj�1bjþ1 þ ajbjþ2 þ ajþ1bj�1Þ þ bðajbjþ1 þ ajþ1bjÞ; ð25Þ
may be verified by substitution in Eq. (24). The total non-dissipative skew-symmetric convective flux which
satisfies
1

2
ðDðabÞjj þ aDbjj þ bDajjÞ ¼

F skew
jþ1=2 � F skew

j�1=2

Dx
; ð26Þ
is then given by
F skew
jþ1=2 ¼

1

2
ðF div

jþ1=2 þ F prod
jþ1=2Þ; ð27Þ
where a and b will be replaced by �q~uk, ~uk, and eY m, depending on the transport equation being considered.
A similar expression is derived for the energy equation by identifying divergence and product-like terms in
Eq. (21). This flux-based approach greatly simplifies the implementation of a consistent and conservative
scheme with SAMR [36]. A similar approach was followed by [37,6] for standard difference operators with
a different energy equation formulation. Finally, the fluxes at the physical domain boundaries are computed
consistently with the skew-symmetric formulation and the discrete boundary stencil discussed in Appendix A.

4.3. Flux switching criteria

We consider two kinds of discontinuities: physical and numerical. Physical discontinuities include shocks and
contacts while numerical discontinuities include coarse-fine mesh interfaces that are akin to jumps in the Jaco-
bian of the mesh. The utilization of upwind differentiation at mesh interfaces improves the quality of the solution
(smoothness) while introducing minimal numerical dissipation, because the solution is smooth. In essence, this
provides a mechanism that minimizes acoustic waves reflected or generated by the coarse-fine interfaces. This
treatment is very similar in spirit to the underlying technique used in discontinuous Galerkin methods [38].
We have found that the best results are obtained when all fluxes of the fine-mesh cell next to a mesh interface
are computed with WENO. The coarse cell fluxes next to the mesh interface, other than the cell face shared with
the fine cells, are left to TCD. Other closures involving specialized interpolation formulas for two- and three-
dimensional SAMR grids have been derived recently [39,40]. These formulas can be proven to be stable in
the linear case and they contribute, as in our interface treatment, to some small amount of numerical dissipation.

For physical discontinuities, the formulation of robust switching criteria for general flow problems remains
an open research area. In this paper, we focus on flows for which we can estimate adequately where to use each
scheme from the physics and geometry of our problems. The present hybrid scheme utilizes a pressure and
density curvature based discontinuity detection criterion to switch schemes from TCD to WENO around
shocks. Cell faces in a tight area around shocks are marked according to the following criteria
Cj ¼ fðxj�1=2; xjþ1=2Þ 2 R : jnp
j j > coDx2; jnq

j j > coDx2; np
j n

q
j > 0g; ð28Þ
where
np
j ¼

�pjþ1 � 2�pj þ �pj�1

�pjþ1 þ 2�pj þ �pj�1

and nq
j ¼

�qjþ1 � 2�qj þ �qj�1

�qjþ1 þ 2�qj þ �qj�1

: ð29Þ
Then, all cells faces in a neighborhood of size n of those that belong to Cj are also marked as containing the
discontinuity producing the set of cell walls Cn

j ¼
S

s¼�n;nCjþs. A three-dimensional split version of this criteria
is used in the simulations. Denoting the WENO fluxes as Fk

inv�WENO and the inviscid fluxes computed from the
skew-symmetric form as Fk

inv�TCD, the hybrid flux takes the form
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Fk
inv ¼

Fk
inv�WENO in Cn;

Fk
inv�TCD in Cn;

(
ð30Þ
where Cn denotes the complement of Cn. Note that because the switch affects the fluxes, not the derivative
itself, no smoothness requirements are needed in Eq. (30). The only requirement is that the fluxes are consis-
tent with those of the continuous equations being solved. Moreover, experience with this technique has shown
that the best results are obtained when the base-line dispersion relationship of the method is preserved across
schemes, as it is the case in our approach, cf. [7]. An example of this technique applied to Riemann’s one-
dimensional wave breaking problem [41] is given in Fig. 3. An extensive discussion of this test problem and
its suitability to asses numerical methods for compressible turbulence simulation is also given in [42].
Fig. 3a highlights the cells in which the shock-capturing WENO method needs to be employed, after the wave
breaks to avoid unphysical oscillations from the centered scheme. Fig. 3b shows the spectra of the analytical
solution together with those computed with three different stencils still without scheme alteration. Note that at
the time, at which Fig. 3b is taken, the solution has not steepened enough to necessarily require a shock-cap-
turing scheme. Fig. 3b clearly illustrates that both standard centered methods predict a faster decay of the
spectrum at higher wavenumbers than the second-order TCD scheme. TCD tends to overestimate the wave-
number content over the higher wavenumber region slightly, but remains closest to the analytical spectrum
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over the widest range. It is this property that makes TCD superior over standard stencils and makes it par-
ticular advantageous for turbulence simulations.

4.4. Viscous terms

The fluxes of the viscous and diffusion transport terms, fvis, are computed using explicit, centered, second-
order 3-point stencils. We avoid the repeated use of the first-order derivative operator in a finite-difference
setting (that incidentally leads to wider than necessary stencils and introduces a decoupling at the highest
wavenumber) and instead employ edge-based, conservative viscous fluxes. In order to accommodate variable
transport coefficients, the viscous transport fluxes are calculated in two steps: The viscous stresses (and diffu-
sive fluxes) are computed at the cell walls using the values between the two adjacent cells and multiplying by
the appropriately interpolated value of the transport coefficient. This results in the required viscous transport
fluxes. In the second step, these fluxes are added to the total fluxes and the solution is marched in time with Eq.
(5). It is straightforward to verify that this method leads directly to a centered 3-point stencil representation of
the second-order derivative when the transport coefficients are constant.

5. Convergence and numerical dissipation in vortical flows

We report results of two tests that investigate order of accuracy and convergence of the current formula-
tion. We use the vortex solution of the Euler equations employed by [43] to study higher order methods; it is
given by the following tangential velocity distribution as a function of the scaled radial coordinate g = r/ro
uh ¼ uog expð�g2Þ; ð31Þ

and
p ¼ po 1� c� 1

c
qou2

o

4po

expð�2g2Þ
� � c

c�1

; ð32Þ
where ro is the vortex radius and p=qc ¼ po=q
c
o. For the tests presented here we use the dimensionless values

uo = p/4, qo = 1, po = 2 and ro = 0.25.
Fig. 4 shows the behavior of the L1-norm of the density error for a single vortex calculated using periodic

boundary conditions in a rectangular domain 0 < x,y < L = 2.0 and discretized in each direction with N

points. The case N = 20 is barely resolved with 4 points across the vortex core. Time integration was per-
formed at a constant, acoustic based, CFL number of 0.9 up to the final time tf = 1; we observed negligible
impact on the error using lower CFL numbers. Additionally, we verified that mass, momentum and energy
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Fig. 4. Convergence error as a function of resolution (L1 norm of the density error). N = L/Dx ranges from 20 to 320.
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was conserved up to machine precision in all cases. As can be seen in the figure, the advertised order of accu-
racy is recovered for all choices of a, with the 4th-order scheme producing the smallest absolute error. Note
that there is no sizable advantage in using the TCD scheme (a = �0.197) over the standard second-order
scheme in these two-dimensional problems unless the flow structure is not correctly resolved by the 3-point
stencil, as shown for N = 20 where the TCD error is comparable with that of the 4th-order scheme. This
advantage of schemes with 5-point stencils is desirable in three-dimensional LES simulations in which
under-resolution is persistent.

To evaluate the effect of our coarse-fine mesh interface closure on numerical dissipation, we extend the pre-
vious example by doubling the horizontal extent of the domain to 2L and discretize the domain using two res-
olutions: the central region L/2 < x < 3L/2 is refined by a factor of r = 2 producing twice the resolution of the
remainder of the domain. We also add a second vortex and a constant uniform convective velocity uc that
advects these vorticies through the coarse-fine mesh interfaces. Periodic boundary conditions are used on
all boundaries and the vortex parameters are identical to those of the previous test case. The vortices are
equally spaced with horizontal separation L and they are initially located with the first vortex a distance xo

from the left boundary x = 0.
We investigate three cases, denoted I, II and III, chosen to be representative of the situations that could be

encountered in practice when using SAMR for LES. They include: I the common scenario in which vortical
cores do not intersect mesh boundaries (xo,uc = 0), II the case of vortices sitting on the mesh boundaries
(xo = L/2,uc = 0) and III, the worst possible case, of fine-coarse-fine mesh boundary traversal (xo = 0,
uc = 2L/tf). An additional case, IIIb, with the same parameters as III is performed using synchronous (uni-
form) time integration to estimate the effect on the solution of the computationally more efficient standard
time adaptation used in the other three cases, cf. Section 2. We always try to avoid scenarios where Cases
II and III arise in our simulations for the reasons that will be discussed next. Only the TCD stencil is used
in these tests since the results are of direct relevance to the LES.

Fig. 5 shows the behavior of the L1 norm of the density error as a function of the coarse mesh resolution in
all cases. It is observed that the error is quite insensitive to whether the vortices are sitting at the mesh interface
or traveling through it; the magnitude of the error is larger in the latter case owing to the larger magnitude of
the convective velocity. The convergence rate is second-order for Cases I, II, IIIb and slightly lower for Case
III. Use of synchronous time integration does contribute to a slight reduction of the error observed in Case III,
as shown in Case IIIb. Finally, Fig. 6 shows the evolution of the averaged kinetic energy variation in the flow
for Case III at differing resolutions; although not shown here, better behavior is observed for Case I and II and
similar behavior for Case IIIb. It can be seen from the case shown that conservation of kinetic energy
improves as the resolution increases, being worst for the unresolved case N = 20. Moreover, for a fixed reso-
lution that resolves the flow structure, the variations of kinetic energy are very small.
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Fig. 5. Convergence of the density error as a function of coarse mesh resolution (L1 norm) for the two vortex periodic system in four
different scenarios. Thick line denotes second-order rate. N = L/Dx ranges from 20 to 320.
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6. Three-dimensional LES

In this section, we perform studies of fully turbulent flows with and without shocks both as code valida-
tion and to demonstrate the value of using LES with SAMR. The examples chosen here are canonical flows
that have been well documented in the experimental literature and the full LES equations, including fvisc and
fsgs, are used in the simulations. In the first example, turbulent mixing is induced by a strong shock wave.
The moderate runtime of this configuration allow resolution and mesh adaptation studies that demonstrate
the savings that can be obtained by our approach over unigrid LES calculations. The second example is a
configuration that would be prohibitively expensive on a uniform mesh and has only been enabled by the use
of SAMR.

The parallel SAMR system that we employ for these computations is the freely available framework
AMROC (Adaptive Mesh Refinement in Object-oriented C++). The adaptive method has been realized com-
pletely decoupled from a particular scheme and has been validated extensively on a large number of hydro-
dynamic test cases [58]. The extensions according to Section 2.3 are implemented effectively in C++ by
class inheritance. A key feature of the framework is the efficient parallelization of the entire SAMR algorithm
including the flux correction operation on distributed memory machines following a rigorous domain decom-
position approach, see [59] for details. During the course of a simulation, the distribution of the evolving
SAMR hierarchy to different processors is adjusted dynamically to balance the work and all parallel data
structures are automatically rearranged.
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Fig. 7. Sketch of flow geometry.
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6.1. RM instability with reshock

The first configuration we study is a Richtmyer–Meshkov instability in which an initially planar shock wave
interacts with a thin perturbed interface between two gases. The acceleration-induced mixing of the fluids is
started when the shock transitions through the interface and is enhanced when the shock returns after its reflec-
tion at the closed end of the tube. This flow exercises both the LES and the shock capturing features of the solver
with dynamically adaptive meshes. The results of mixing layer growth rate are compared with the experimental
measurements by [44]. We chose the experimental case corresponding to a Mach 1.5 shock interacting with an
Air–SF6 interface depicted in Fig. 7. The unshocked air has a density of 0.27885 kg/m3 and pressure of 23 kPa.
Temperature is uniform in the unshocked side. The domain dimensions are �0.20 m 6 x 6 0.62 m by
�0.135 m 6 y 6 0.135 m by �0.135 m 6 z 6 0.135 m. Initially, a shock is located at x = �0.05 m and travels
from left to right, towards the Air–SF6 interface located at x = 0 m. A perfectly reflecting boundary condition
is used at x = 0.62 m and a non-reflective boundary condition is used at x = �0.2 m. The time-dependent ref-
erence states are shown schematically in the wave diagram of Fig. 8 with the state variables listed in Table 2.
These states were determined approximately in an iterative manner from one-dimensional simulations. The lat-
eral walls are modeled using periodic boundary conditions. The initial interface was regularized with a hyper-
bolic tangent profile of thickness 1 cm. A sinusoidal perturbation was superimposed on this profile with period
window
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Fig. 8. Shocktube wave interaction diagram. In this diagram, the initial shock comes from the left-hand side and the end wall is located at
the far right.

Table 2
Inflow plane boundary condition reference states (bc states) in the different periods of time

Period (ms) qbc (kg/m3) ubc (m/s) pbc (kPa)

t < 1.05 0.5185 235.93 56.577
1.05 6 t < 5.5 0.6330 155.45 75.055
5.5 6 t 0.9050 0.0 125.40

Table 3
Computational parameters of the Richtmyer–Meshkov LES simulations

Case # Levels Finest Dx (mm) # Proc. CPU time (h)

A0 1 4.2 16 –
A1 2 2.1 16 –
A2 3 1.05 80 11,262
A00 1 1.05 256 38,400

To avoid confusion, we do not report the timings of A0 and A1 since they were very small runs on a local cluster.
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4 cm and amplitude 2.5 mm. The domain was discretized with 196 · 64 · 64 cells on the base grid. Three sim-
ulations were carried out as described in Table 3. The refinement ratio between levels was equal to 2 for all levels
and directions and the subgrid cutoff scale is set to that of the finest mesh in the simulation. The shock is always
captured at the finest resolution available using the detection criterion Eq. (28), but the interface is only well
resolved in simulations A1 and A2. The shock detection criteria used the values of co = 2.5 · 103 and n = 3 that
proved to give the best results for this problem.

6.1.1. Physical results

Fig. 9 shows the evolution of the thickness of the interface with time for the three simulations. There are two
important interactions shown in this figure. First, the initial shock reaches the interface close to t = 0, compress-
ing it very quickly, while the transmitted shock continues towards the wall. The misalignment of density and pres-
sure gradients deposits vorticity at the interface and initiates the formation of the well-known bubbles and spikes
characteristic of acceleration-driven interfaces. This contributes primarily to increased stirring of the flow since
there are no sufficiently large gradients to trigger molecular mixing at this time. Second, when the shock is
reflected back from the wall, it reshocks the interface at around 3.2 ms after the initial shock interaction. Quickly
thereafter, the additional vorticity deposition initiates a more vigorous non-linear phase that leads to mixing
until all the kinetic energy is exhausted and a slow growth period of the thickness of the layer is reached beyond
6 ms. Note that, owing to molecular diffusion, mixing will proceed but with a characteristic time scale much lar-
ger than that produced by the vorticity deposition during the shock-interface interactions. Fig. 9 also compares
the experimentally measured growth rates (thick lines) with the mixing layer thickness obtained from the simu-
lation at the same time periods of the experiment. We observe that the resolution of simulation A0 is insufficient
to capture both the initial and post-reshock growth periods. This is largely a consequence of lack of resolution in
capturing the initial interface shape, as can be seen in Fig. 9. In simulation A1, the resolution is now sufficient to
capture the initial growth period but it fails to capture the post-reshock growth period. Simulation A2 has suf-
ficient resolution to capture both the initial and post-reshock growth periods.

Finally, Fig. 10 shows iso-surfaces of the conserved scalar used to mark the interface, separating air from
SF6, at 5 ms for simulation A2. Each of the three iso-surfaces denote the 25%, 50% and 75% SF6 mass fraction
iso-surfaces with different intensity of gray (darker denoting SF6 side). The figure also shows the correspond-
ing mesh distribution at this time. It is possible to identify the thinner shock (near x = 0 m) leaving the domain
and the larger mixing zone to the left.

6.1.2. Computational costs

The small simulations A0 and A1 were performed at a local Opteron high-performance cluster while sim-
ulations A2 and A00 were performed on QSC, an unclassified Tru64 supercomputer at the Los Alamos
National Laboratory; each processor is an Alpha EV6 with 4 GB of memory and a clock speed of
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0
0 2 4 6

0.02

0.04

0.06

0.08

0.1

0.12

M
ix

in
g 

Z
on

e 
W

id
th

 [m
]

A0
A1
A2

37
.2

 m
/s

4.2 m/s

Fig. 9. Evolution of the mixing layer thickness with time for three different resolution LES and experimentally measured growth rates (in
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Fig. 10. Composite view of iso-surfaces 0.25, 0.5 and 0.75 of SF6 mass fraction (a) and (b) with levels of refinement (c) of the mesh as light
gray (level 1) and dark gray (level 2).
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1.25 GHz. Simulation A00, at the same fine resolution of A2, was not run with the SAMR driver but with a
simpler Fortran90 driver [45]. Timings and other parameters are reported in Table 3. This provides real com-
parisons of the actual costs of a simulation with SAMR, including the overhead costs of the mesh hierarchy.
From a physical point of view, the mixing width evolution from this unigrid simulation is indistinguishable
from that predicted by simulation A2. Nevertheless, the computational cost and storage requirements are
not the same. The total grid cell usage as a function of time for A2 is shown in Fig. 11. It can be observed
that the cell count varies from a minimum of approximately 4 million cells to a peak of around 14 million.
These values can be compared with those of the unigrid simulation, that uses approximately 4 times more stor-
age and took more than 3 times longer to complete. Table 4 shows a detailed cost division of the different parts
of the SAMR algorithm. Since the mesh is time evolving we have chosen to present percentage costs at three
different times, representative of the physical stages of the simulation. At all times the numerical update within
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Fig. 11. Evolution of cell count with time.

Table 4
Timings of the SAMR algorithm at different instants of the simulation (rounded to closest integer percentage value)

Load division at time 2 ms (%) 5 ms (%) 10 ms (%)

Integration 45 66 51
Flux correction 6 3 4
Boundary synchronization 45 28 42
Regridding 0 0 0
Partition 1 1 1
Recomposition 1 1 1
Misc 1 1 1
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the WENO-TCD scheme is the largest portion despite the fact that the computationally very efficient TCD
method is used in the vast majority of the domain and the more cumbersome WENO scheme is used only
in the direct vicinity of the shock. The second largest portion is the ghost cell synchronization of SAMR sub-
grids, which is due to the involved parallel communication operations. We emphasize that the usage of multi-
stage Runge–Kutta methods for the temporal advancement necessarily requires a spatial synchronization in
every substage, which makes these schemes significantly more communication-intensive than single-step finite
volume methods. A relatively small fraction of the cost is also associated with the overhead for the flux cor-
rection operation at coarse-fine interfaces. Regridding and (parallel) recomposition are minor, because this
application uses only a shallow SAMR hierarchy with few, but relatively large subgrids, which is typical
for the LES reported in this paper.

6.2. Planar low-speed turbulent jet

We perform large-eddy simulation of the planar turbulent low Mach number jet of [46]. This flow is inho-
mogeneous with large Reynolds number and involves a wide range of temporal and spatial length-scales.
Numerical simulations of this flow in an experiment-size domain with uniform grids would suffer from the
resolution requirements of the thin shear layers issuing from the slot and the slender nature of free turbulent
jets. While we do not use the top-hat inflow velocity profile reported in [46], adaptive refinement is effectively
used to resolve a parabolic inflow velocity profile with the same momentum of said shear layers. The resolu-
tion requirement is nevertheless more stringent in the near-flow region than that of the turbulent flow
downstream.

The geometry of the flow and the grid cells of the mesh hierarchy in the near-flow region are shown in
Fig. 12. The jet Reynolds number of the flow is 30,000 with an exit velocity of 35 m/s and a slot width
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d = 1.3 cm. The domain extends with length L = 2 m downstream, height H = 2 m in the transverse direction
and width W = 50 cm in the spanwise direction. The LES is performed in a domain of the same size. Char-
acteristic based inflow/outflow conditions are specified in the simulation. The slot inflow is modeled as the
superposition of a mean streamwise velocity plus incompressible three-dimensional harmonic velocity fluctu-
ations of magnitude 0.2% at the wavelength of 10 cm. The mean parabolic velocity profile is resolved in the
finest mesh of the simulation. The top and bottom boundary velocities have to be specified owing to the
entrainment condition.

The domain is discretized using a base grid of 160 · 160 · 40 cells and two additional levels with the refine-
ment ratio 2 for the first level and 4 for the second level. Owing to the geometry of the flow, finest grids are
only needed in the first 10% of the domain, where the thin shear layers are present. The next coarsest level of
refinement is restricted to the fist half of the domain since it is this region where the turbulence is strongest.
The second half of the domain downstream is discretized using the base grid only. For consistency, the subgrid
cutoff scale of the turbulence model varies linearly from the fine mesh spacing Dxf at the inflow plane to the
coarse mesh size Dxc at the center of the domain, Dc(x) = Dxf + (Dxc � Dxf)10x/L.

6.2.1. Physical results

Fig. 13 shows iso-contours and iso-surfaces of mixture fraction at one instant in time. We observe all the
features characteristic of planar jets, including the flapping generated by the strong vortices resulting from the



Fig. 13. Side view of iso-contours of mixture fraction (a) and iso-surfaces of mixture fraction and (b) at levels of 0.2, 0.5 and 0.8,
respectively.
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shear layers interaction. These qualitative results are consistent with experimental observation and DNS data
of [47] in smaller domains. Fig. 14 shows comparisons of jet statistics with the experimental measurements of
[46]. Fig. 14a compares compensated mean centerline velocity decay, U 2

j=U 2
cðxÞ with the experimental corre-

lation. For a planar jet, the expected dependence of U cðxÞ � x�
1
2 is better measured as the compensated veloc-

ity ratio. The agreement between experiment and simulation is satisfactory. Fig. 14b shows normalized
turbulence kinetic energy at the centerline as a function of distance. It is observed that the agreement is very
good except in the near-flow region where the difference between our inflow velocity profile and those of the
experiment have an important effect, x 6 40d. Fig. 14c, d show mean velocity profiles and kinetic energy at
different stations downstream of the inflow plane also with good self-similar collapse as expected.

6.2.2. Computational costs

In this simulation, we utilize up to 4 · 106 grid cells, including all levels. The savings compared to an equiv-
alent unigrid mesh are a factor of about 130 in storage and runtime. This case exemplifies the enormous cost
reductions that can be obtained by applying SAMR to LES in which typical simulations often have to be run
for Oð105 � 106Þ time steps to obtain converged statistical data.
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Fig. 14. Comparison with experiments: (a) centerline averaged velocity decay, (b) normalized centerline turbulence kinetic energy, (c) self-
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82 C. Pantano et al. / Journal of Computational Physics 221 (2007) 63–87
7. Conclusions

We have described an extension of the classical SAMR algorithm, after Berger and Colella, to meet the
requirements of large-eddy simulation. We have also constructed a hybrid solver whose formulation uses
low-numerical-dissipation, centered schemes in skew-symmetric form within patches of uniform resolution
in turbulent regions of the flow, and upwinding in regions where shocks exists and at fine-coarse mesh inter-
faces. The upwinding operator is based on a modified version of the WENO method that matches reference
stencils to the centered scheme. This is crucial in order to minimize spurious reflections arising when the
scheme transitions from centered to upwind form. A conservative formulation in flux form is used to ensure
weak convergence. A positivity preserving third-order Runge–Kutta time integration solver is adapted to the
SAMR methodology to ensure conservation at mesh interfaces.

Several example LES simulations have been analyzed. We discussed the order of accuracy and minimal
LES-SAMR refinement conditions and, in particular, the problem of energy generation/loss at fine-coarse
mesh interfaces of our overall method. In this respect, it is observed that our fine-coarse mesh interface treat-
ment performs very well with respect to convergence and conservation of kinetic energy as long as the flow
structures passing through the mesh interface are reasonably well resolved. From the validation point of view,
the present LES-SAMR method allowed us to compare simulation results obtained on conventional distrib-
uted memory systems of moderate size directly to the shock-induced mixing flow produced by the Richtmyer–
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Meshkov instability and to three-dimensional turbulent jet statistics. The good agreement between simulations
and experimental data confirms the relevancy of the approach described. Moreover, substantial savings gen-
erated by the SAMR approach allow the simulation of flows that would have prohibitively large memory and
computational requirements if unigrid methods were used.
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Appendix A. Boundary closure

The boundary closure used to discretize the governing equations is derived using the energy approach of
[48,49]. This method constructs a biased numerical discretization of the first-order derivative at the boundary
of the domain for the linear equation
dw
dt
þ k

dw
dx
¼ 0; ðA:1Þ
that satisfies the summation by parts property. This technique produces boundary closures that are stable and
robust in practice. Briefly, it requires that the discretization of the first-order derivative takes the form
H
dw
dx
¼ 1

Dx
Dw; ðA:2Þ
where w is the equally spaced discretized solution vector wj = w(jDx, t) with j = 0,1, 2,. . . and we consider for
simplicity the semi-infinite case since the interior stencil is explicit. For j > 1, matching with the TCD stencil,
Eq. (18), is imposed; i.e., away from the boundary. The matrix H is symmetric and positive definite and in our
case will be taken as the diagonal matrix H ¼ diagfh1; h2; 1; 1; . . .g for stability reasons [48]. The matrix D is
almost anti-symmetric with the only non-zero term in the diagonal being the corner term, that equals
d1,1 = �1/2. The boundary closure that results is given by
Dxh1

dw1

dx
¼ � 1

2
w1 þ d1;2w2 þ aw3; ðA:3Þ

Dxh2

dw2

dx
¼ �d1;2w1 þ bw3 þ aw4; ðA:4Þ
where a is the parameter in our stencil. The coefficients, h1, h2 and d1,2, are obtained by matching terms in
Taylor series expansions in powers of Dx to first-order of accuracy, giving
d1;2 ¼
1

2
� a h1 ¼

1

2
þ a h2 ¼ 1� a; ðA:5Þ
and according to [50] we retain second-order global accuracy. It can be verified that h1, h2 > 0 for all the values
of a of interest in this study so that H is positive definite. This method is energy stable and also verifies GKS
[51,52] and asymptotic stability.

Numerically, Dirichlet boundary conditions are imposed using the simultaneous approximation term
(SAT) penalty approach of [49]. This is achieved by altering the governing equations at the boundary, in
our case at x = 0 when k > 0, such that there we solve
dw
dt
þ k

Dx
H�1ðDw� sd1;1Sðw0 � wbcðtÞÞÞ ¼ 0; ðA:6Þ
where the theoretical framework of [49] and [53] shows that for the diagonal form of H, the vector
S ¼ f1; 0; 0; . . . gT with s P 1 and wbc(t) is the incoming wave strength. Typically, a value of 1.5 < s < 2
was used in the simulations discussed in this paper.

The cases of interest in this paper correspond to flows at high Reynolds numbers where the governing equa-
tions form a system of almost hyperbolic equations. We neglect in this discussion the contribution of subgrid
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fluxes and transport (viscous, heat conduction and diffusion) so that f k ¼ f k
inv within this section and consider

the leading order effect of waves traveling normal to a boundary. We use characteristic based boundary con-
ditions [54] at open boundaries formulated in terms of the discrete methods detailed previously. This enables
long time integration of the governing equations. We introduce the eigensystem of the linearized equations
and the characteristic vector, w, related to the conservative vector of state, q, through
ow ¼ R�1oq; ðA:7Þ

where R is the right-eigenvector matrix of the Jacobian of the flux vector normal to the boundary,
A ¼ of

oq
: ðA:8Þ
The diagonalized system becomes
ow

ot
þ K

ow

ox
¼ 0; ðA:9Þ
where the matrix K is diagonal, K = diag{k1,k2, . . .,kN+5}, and the entries km are the eigenvalues of the hyper-
bolic system ordered in increasing magnitude, k1 = u � c, k2�(N+4) = u and kN+5 = u + c, where u is the flow
velocity normal to the boundary and c is the speed of sound. Eq. (A.6) is then multiplied by R to obtain the
corresponding primitive equations with SAT correction for those characteristic directions with incoming ki.
Finally, subsonic outflows use the approximate method developed by [55] and viscous terms are handled fol-
lowing [56].
Appendix B. Subgrid model

The quantities that need to be modeled are subgrid momentum stresses
sik ¼ �qðguiuk � ~ui~ukÞ � ð�rik � ~rikÞ; ðB:1Þ

the subgrid total energy transfer
re
k ¼ �qðghuk � ~h~ukÞ þ

�q
2
ð gujujuk �gujuj~ukÞ � ðrkjuj � ~skj~ujÞ þ ð�qk � ~qkÞ; ðB:2Þ
and the subgrid scalar transport
rl
k ¼ �qðgY luk � eY l~ukÞ þ ð�J l

k � ~J l
kÞ: ðB:3Þ
The last term appearing in Eqs. (B.1) and (B.3) and the last two terms in Eq. (B.2) will be neglected here be-
cause they contribute typically very little to the total budgets for large Reynolds number flows.

The stretched-vortex model after [30–32] is used for the turbulent transport terms. In this model, it is
assumed that subgrid motion is produced by subgrid vortical structures. The subgrid terms can then be
expressed as
sik ¼ �qksgsðdik � eiekÞ; ðB:4Þ

re
k ¼

1

2
�qDck

1=2
sgs ðdjk � ejekÞ

o~h
oxj

; ðB:5Þ
and
rl
k ¼

1

2
�qDck

1=2
sgs ðdjk � ejekÞ

oeY l

oxj
; ðB:6Þ
where ei are the direction cosines of the subgrid vortex axis and Dc is the subgrid cutoff length scale. The sub-
grid kinetic energy ksgs is given by
ksgs ¼
Z 1

kc

EðkÞdk; ðB:7Þ
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where kc = p/Dc. The subgrid vortices are assumed to take the form of a Lundgren stretched-spiral vortex with
shell-summed subgrid energy spectrum of the form
EðkÞ ¼ jo�
2=3k�5=3 expð�2k2m=ð3jajÞÞ: ðB:8Þ
The parameter jo is the Kolmogorov pre-factor, � is the local cell-averaged dissipation and a ¼ ~Sijev
i e

v
j is the

axial strain along the subgrid vortex axis provided by the locally resolved flow with rate-of-strain tensor
~Sij ¼
1

2

o~ui

oxj
þ o~uj

oxi

� �
:

In order to implement the model, the ei must be specified or otherwise determined, and the composite
parameter jo�

2/3 calculated. The ei are modeled by alignment with extensional eigenvectors of ~Sij and with
the resolved-scale vorticity, cf. [32]. The parameter jo�

2/3 is calculated using resolved-scale, second-order
velocity structure functions, see [57]. This can take two forms: In the first, a local spherical average is used
to estimate the second-order, longitudinal velocity structure function which can then be matched to the model
subgrid spectrum. In the second, an average longitudinal structure function on a circle of radius r, with origin
at the cell center, and lying in a pre-specified plane is computed for each cell. The chosen plane usually con-
tains at least one homogeneous flow direction. If the circular-averaged structure function is eF c

2ðr; xÞ and it is
assumed that r lies in the inertial range, then one can obtain [57]
jo�
2=3 ¼ peF c

2ðr; xÞ

2D2=3
R 2p

/¼0

R p
s¼0

s�5=3 1� J 0 s r
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 w cos2 /

q� �� �
dsd/

: ðB:9Þ
In Eq. (B.9) the cutoff wavenumber is kc = p/D where D is the local cell size, and w is the angle between the
subgrid vortex axis and the normal to the plane. All other quantities on the right-hand side can be computed
from the resolved-scale velocity field. The integral in the denominator is a function of r/D and w and can be
estimated in approximate analytical form. Typically, r = D. In the tensor-diffusivity modeling of subgrid scalar
transport equations (B.6) and (B.5), a dimensionless parameter on the right-hand side is taken equal to unity,
see [31] and [32]. The stretched-vortex model is entirely local in the sense that no spatial averaging is required
to determine model parameters.
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